RayPlex[®] Custom Human Multiplex Bead Array Kit

Quantitative measurement of proteins in liquid phase by flow cytometry

User Manual Last revised June 25, 2020

Catalog numbers: FAH-CUST-100 (100 tests) FAH-CUST-500 (500 tests)

ISO 13485 Certified

3607 Parkway Lane, Suite 200 Peachtree Corners, GA 30092 Tel: 1-888-494-8555 (toll-free) or 770-729-2992; Fax:770-206-2393 Web: <u>www.raybiotech.com</u> Email: <u>info@raybiotech.com</u>

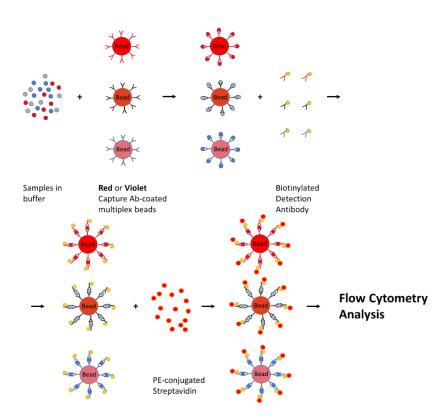
Table of Contents

I.	Introduction	2
II.	Overview	2
III.	How it Works	3
IV.	Bead ID and Distribution	4
V.	Materials Provided	5
	Additional Materials Required	6
VI.	Assay Protocol	6
	A. Preparation of Samples	6
	B. Preparation of Reagents	7
	C. Preparation of Protein Standards	7
	D. Assay Procedures	8
	E. Flow Cytometer Set-up and Data Acquisition	9
	F. Data Analysis	11
VII.	8-Point Standards	18
VIII.	Troubleshooting Guide	19
IX.	Note	20

I. Introduction

RayBiotech is an industry leader in protein and antibody array technologies and services. The RayPlex Multiplex Cytometric Bead Arrays are designed to detect a wide range of common cytokines, serological proteins, intracellular signal molecules and biomarkers for a wide variety of disease states including cancer, inflammation, cardiovascular disease, and others. The RayPlex array panels are easily customized from the vast sandwich antibody pair library used in our popular Quantibody[®] array. Because RayBiotech's ELISA kits use these same antibodies, corresponding validation assays are readily available for follow-up studies.

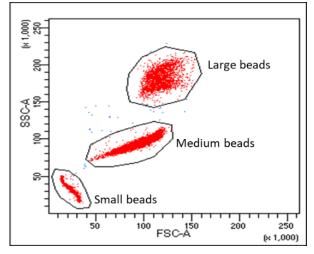
The RayPlex antibody-coated bead technology significantly reduces the amount of sample required compared to standard ELISA, while delivering unparalleled flexibility in analyte combination when designing a customized panel. RayPlex arrays are compatible with most common flow cytometers.


II. Overview

RayPlex Multiplex Bead Antibody Array – Custom Human Kit	CXCL13, FCRL3, CCL21, CD23, CD137, C1R, Slamf6, IgM, CD22, TNFRSF17, Siglec6, TFNRSF4
Format	Flow Cytometry-based. This kit can be performed by a flow cytometer with blue laser (PE channel) and red laser (APC channel)
Detection Method	Flow Cytometry
Minimal Sample Volume	Serum or plasma:12.5 µl; Culture supernatant or cell lysate: 25 µl
Assay Duration	4 hours

A 12-plex kit is shown as an example.

III. How it Works


RayBio® Multiplex Bead Antibody Array is a sandwich-based assay. The general assay procedures are outlined as follows.

IV. Bead ID and Distribution

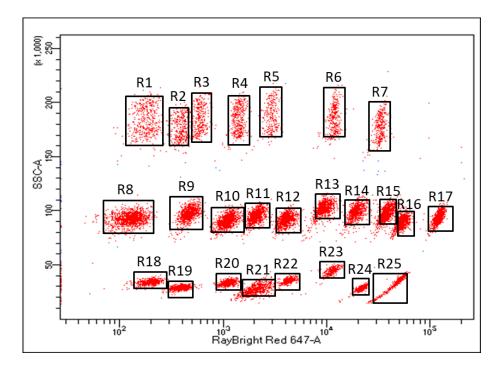

RayBio[®] Multiplex Beads consist of three sizes: large, medium and small (Figure 1 and 2). Target-specific beads ID is shown as follows.

Figure 1. Multiplex beads size

Bead ID R1 - R7: Large Size Beads Bead ID R8 - R17: Medium Size Beads Bead ID R18 - R25: Small Size Beads

Figure 2. Multiplex beads by size and color intensity distribution

FHA-CUST-100 (500)							
Bead ID	Targets						
R1	CXCL13						
R2	FCRL3						
R3							
R4	CCL21						
R5	CD22						
R6	CD23						
R7	CD137						
R8	C1R						
R9	Slamf6						
R10	lgM						
R11							
R12	TNFRSF17						
R13	Siglec6						
R14	TNFRSF4						
R15							
R16							
R17							
R18							
R19							
R20							
R21							
R22							
R23							
R24							
R25							

Specific Panel Bead ID Distribution

V. Materials Provided

Upon receipt, all components of the RayPlex Multiplex Cytometric Bead Array kit should be stored at 4°C. Lyophilized protein standard should be stored at -80°C.

If stored in this manner, kit will retain complete activity for at least 6 months.

Item	Description	100 Tests	500 Tests
1	RayPlex Custom Human Multiplex Bead Cocktail	2.5 ml	12.5 ml
2	5X Assay Diluent	20 ml	100 ml
3	20X Wash Buffer	10 ml	50 ml
4	V-shaped 96-well Microplate	1	5
5	Lyophilized Protein Standard Mix	1	5
6	Detection Antibody Cocktail (biotinylated)	500 µl	2.5 ml
7	Streptavidin-PE	50 µl	250 µl
8	Manual	1	1

Additional Materials Required

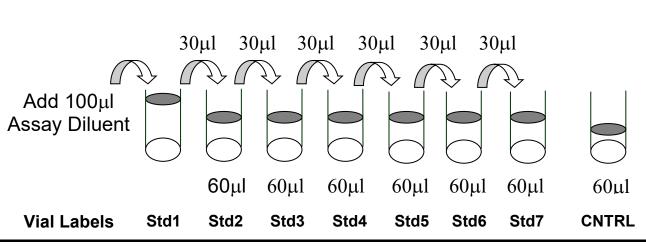
- Orbital 96-well plate shaker (with ability to reach 1000 rpm)
- Flow cytometer with violet, blue and red lasers
- Aluminum foil
- Distilled water
- 1.5ml polypropylene microcentrifuge tubes or similar
- Microcentrifuge
- Rainbow calibration particles
- Optional: High throughput sampler (HTS) for 96-well plate reading

VI. Assay Protocol

A. Preparation of Samples

- We recommend the following parameters for your samples: 25 µl of original or diluted serum, plasma, cell culture media, or other body fluid.
- If testing serum and plasma, dilute samples with Assay Diluent at least 1:1
 - Note: Levels of target protein(s) may vary between different samples.
 Optimal dilution factors for each sample must be determined empirically by the investigator.
- If serum-containing conditioned media is required, it is highly recommended that complete medium be used as a control since many types of sera contains assay targets, or cross-reactive proteins.

• It's recommended to use a 96-well round bottom plate (mirror plate) to prepare samples and then transfer those samples to the test plate or test tubes.


If you experience high background or the readings exceed the detection range, further dilution of your sample is recommended.

B. Preparation of Reagents

- Keep all reagents on ice.
- Multiplex beads cocktail must be vortexed for 30 seconds each time before use. Use 25 µl beads/test.
- Dilute 5x Assay Diluent with DI H₂O to create 1x Assay Diluent.
- Detection antibody cocktail should be diluted 1:10 in Assay Diluent as working stock. Dilute only what is needed to perform the tests for each experiment. Use 50 µl/test.
- Streptavidin-PE is diluted 1:100 in Assay Diluent as working stock. Dilute only what is needed to perform the tests for each experiment. Use 50 µl/test.
- Protect fluorescent multiplex beads from frequent exposure to light.
- Dilute 20x wash buffer with DI H₂O to create 1x wash buffer. Dilute only what is needed to perform the tests for each experiment.

C. Preparation of Protein Standards

Note: Reconstitute the lyophilized standard within one hour of usage.

Prepare serial dilutions of protein standards

- 1. Reconstitute the Protein Standard Mix (lyophilized) by adding 100 μ l Assay Diluent to the tube. For best recovery, always quick-spin vial prior to opening. Dissolve the powder thoroughly by gentle mixing, and label this tube as Std1.
- 2. Label 6 clean microcentrifuge tubes as Std2 to Std7. Add 60 μl Assay Diluent to each of the tubes.
- 3. Pipette 30 μ l Std1 into tube Std2 and mix gently. Perform 5 more serial dilutions by adding 30 μ l Std2 to tube Std3, mix, and so on.
- 4. Add 60 μ l Assay Diluent to another tube labeled as CNTRL. Do not add standard or samples to the CNTRL tube. This tube will be used as the negative control.

Note: Since the starting concentration of each protein standard may be different, the concentrations from Std1 to Std7 for each protein are varied. The exact concentrations can be found in section VII.

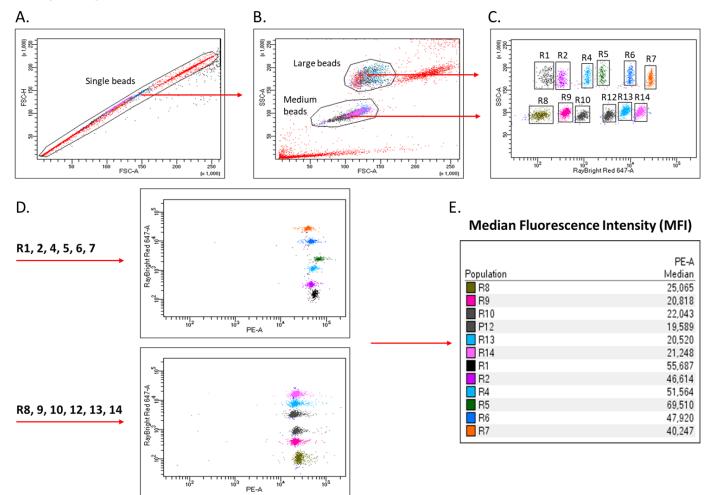
D. Assay Procedures

- 1. Prepare a V-shaped 96-well microplate and mark positions for standard and samples. Duplicate tests are recommended for all standards and samples for best data quality.
- 2. Add 25 μ I of RayPlex Multiplex Bead cocktail to the corresponding wells to be used.
- 3. Add 25 μ l standard or pre-diluted sample to the above corresponding wells. Total volume is each well is 50 μ l. Place plate on an orbital plate shaker. Shake at 1000 rpm at room temperature for 2 hours.

Note: This step may be done overnight at 4°C for higher signal results. Longer incubation time is preferable for higher signal or for lesser protein concentrations.

 Wash the beads by adding 200 μl wash buffer and spin down at 1000 g for 5 minutes at room temperature, remove the supernatant using a multichannel pipet. Repeat this wash step one more time.

- 5. Add 50 µl of biotinylated detection antibody cocktail (pre-titrated, see Section B, Preparation of Reagents) to each well. Resuspend the beads by gently pipetting and incubate on an orbital shaker at 1000 rpm, room temperature for 1 hour.
- 6. Wash plate once as outlined in step 4. Add 50 μl of Streptavidin-PE (pretitrated, see Section B, Preparation of Reagents) to each well, incubate on an orbital shaker at 1000 rpm, room temperature for 30 minutes.
- 7. Wash plate once as outlined in step 4. Resuspend in 200 µl of Assay Diluent and run the samples on a flow cytometer with an HTS, or transfer samples to standard FACS tubes for manually reading.


E. Flow Cytometer Set-up and Data Acquisition

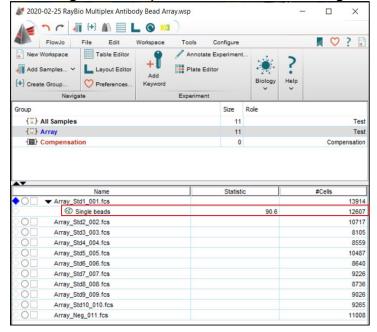
NOTE: RayBiotech currently offers two kinds of multiplex beads. Our "Red Beads" (emission in the APC channel, and the same as RayBright[®] 647) while our "Blue Beads" (emission in the Violet 450nm channel). If only using Red Beads, a flow cytometer with Blue and Red lasers is required. If using both Violet and Red Beads, a flow cytometer equipped with 3-lasers (violet, blue and red) is required. Perform standard QC and Optimization for the cytometer during setup, then set up the cytometer as you would for normal use. Overall, compensation is not necessary when only using Red Beads and Streptavidin-PE. If beads are too intense in the APC channel, there might be a smiling effect (curved population grouping), in which case manually adjust PE and APC compensation to correct it.

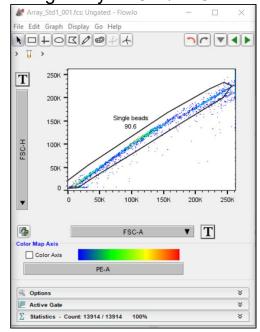
- 1. Depending on the brand of the flow cytometer, you may need to start the acquisition software and run QC beads before proceeding further.
- 2. Start a new experiment with PE and APC channels.
- Adjust voltage for FSC (forward scatter, linear mode) and SSC (side scatter, linear mode) so that the major bead populations are shown (Figure 1). Create FSC-H/FSC-A daughter population for "Single beads" selection to remove and limit doublets or higher complexes (Figure 3A).
- 4. Create a new dot plot from "Single beads" parent gate, and gate on Large, Medium, and/or Small beads (Figure 3B).

- 5. Create new dot plot from the Large, Medium, and/or or Small beads parent gate. Gate populations for all bead populations for the assay based on SSC (linear mode) and APC (log mode). Adjust APC channel PMT voltage so that all populations are evenly distributed throughout in a prominent area (Figure 3C).
- Create APC by PE (using log scale for both) dot plot from the Large, Medium, and/or Small beads parent populations. Run a small amount of the negative beads sample and the top standard beads as a sample. Adjust PE voltage so that in negative beads for each population the PE MFI is around 10¹ - 10².
- 7. Following setup, run standard and samples (as in Figure 3D).
- 8. Create a statistics view to show MFI for each population (Figure 3E). **MFI** of all analytes for all samples can be exported in Excel format by "Batch Analysis" of a whole specimen in FACSDiva.
- 9. To keep the testing consistent upon each assay, use of rainbow calibration particles (rainbow beads, mid-range preferred) can allow the standardization of the assay if run in each assay before collecting samples.
- 10. An HTS is preferred as the 96-well microplate can be used directly. If an HTS is not available, transfer sample to FACS tubes for acquisition. Set the number of bead events to be acquired to at least 300 per target population for best results. More beads will equate to improve accuracy.

Note: MFI data of each analytes for all samples can also be acquired by exporting the entire complete dataset as an FCS file. Analyze data in FlowJo or equivalent software and create and export the PE MFI for all populations of all standards and samples in Excel/similar format.

Figure 3. A Representative Image of Flow Cytometer Set-up for a Test Using Large and Medium Red Beads.


F. Data Analysis using FlowJo


The following bead array data set analysis is based on FlowJo software. If you require assistance in analyzing your data, please contact us info@raybiotech.com

1. Open FlowJo and drag FCS files or a folder contains FCS files to a new workspace. An example "Array" folder is used for this instruction. Save the analysis as a WSP file with a new name.

FlowJo File Edit Workspa	ace Tools	Configu	re				?
New Workspace Add Samples ~ Add Samples ~ Create Group Navigate	d Plate		ient	Biology	? Help		
Group		Size	Role				
{] } All Samples		11					Те
{ T} Array		11					Te
Example 1 Compensation		0				Comp	ensati
▼	Ctatiot			fCalls		lection T	ima d
Name	Statist		4	#Cells		llection T	
Name	Statist		#	139	14 25-F	EB-2020	17:49
Name Array_Std1_001.fcs Array_Std2_002.fcs	Statist		#	139 107	14 25-F 17 25-F	EB-2020 EB-2020	17:49 17:54
Name	Statist		ŧ	139 107 81	14 25-F 17 25-F 05 25-F	EB-2020	17:49 17:54 17:56
Name Array_Std1_001.fcs Array_Std2_002.fcs Array_Std3_003.fcs	Statist		:	139 107 81 85	14 25-F 17 25-F 05 25-F 59 25-F	EB-2020 EB-2020 EB-2020	17:49 17:54 17:56 17:57
Name Array_Std1_001.fcs Array_Std2_002.fcs Array_Std3_003.fcs Array_Std4_004.fcs	Statist		#	139 107 81 85 104	14 25-F 17 25-F 05 25-F 59 25-F 87 25-F	EB-2020 EB-2020 EB-2020 EB-2020	17:49 17:54 17:56 17:57 17:58
Name Array_Std1_001.fcs Array_Std2_002.fcs Array_Std2_003.fcs Array_Std4_004.fcs Array_Std5_005.fcs	Statist			139 107 81 85 104 86	14 25-F 17 25-F 05 25-F 59 25-F 87 25-F 40 25-F	EB-2020 EB-2020 EB-2020 EB-2020 EB-2020	17:49 17:54 17:56 17:57 17:58 17:59
Name Array_Std1_001.fcs Array_Std2_002.fcs Array_Std3_003.fcs Array_Std4_004.fcs Array_Std5_005.fcs Array_Std6_006.fcs	Statist			139 107 81 85 104 86 92	14 25-F 17 25-F 05 25-F 59 25-F 87 25-F 40 25-F 26 25-F	EB-2020 EB-2020 EB-2020 EB-2020 EB-2020 EB-2020	17:49 17:54 17:56 17:57 17:58 17:59 18:00
Name Array_Std1_001.fcs Array_Std2_002.fcs Array_Std3_003.fcs Array_Std5_005.fcs Array_Std6_006.fcs Array_Std7_007.fcs	Statist		#	139 107 81 85 104 86 92 87	14 25-F 17 25-F 05 25-F 59 25-F 87 25-F 40 25-F 26 25-F 36 25-F	EB-2020 EB-2020 EB-2020 EB-2020 EB-2020 EB-2020 EB-2020	17:49 17:54 17:56 17:57 17:58 17:59 18:00 18:01
Name Array_Std1_001.fcs Array_Std2_002.fcs Array_Std3_003.fcs Array_Std4_004.fcs Array_Std5_005.fcs Array_Std6_006.fcs Array_Std6_006.fcs Array_Std6_008.fcs Array_Std6_008.fcs	Statist		*	139 107 81 85 104 86 92 87 90	14 25-F 17 25-F 05 25-F 59 25-F 87 25-F 40 25-F 26 25-F 36 25-F 26 25-F	EB-2020 EB-2020 EB-2020 EB-2020 EB-2020 EB-2020 EB-2020 EB-2020	17:49 17:54 17:56 17:57 17:58 17:59 18:00 18:01 18:02

2. Using the sample Std1, create a "Single beads" gate by FSC-H/FSC-A.

- # 2020-02-25 RayBio Multiplex Antibody Bead Array.wsp Array. Maray_Std1_001.fcs: Single beads r 🔿 📲 (+) 🖍 📰 L 🎯 🛤 ile Edit Granh Disnlay ile Edit Granh Display Go Hel Go H TO THE NOLOGIA #++ FlowJo File Edit Workspace Configure Table Editor +1 🔾 🕽 🕄 Single beads U Plate Ed 11 . v Layout Editor Add Keyword Т 250K Т 250 Large and Medium Beads 43.8 Help O Preferences. + Create 200K 200 Size {] All Samples 11 Test 150K 150K {
 Array
 Array
 Compensati 11 Test FSC-H SSC-A 100 100 Name ▼ Array_Std1_001.fcs ▼ ③ Single beads ③ Large and Medium Bea Array_Std2_002.fcs 200K 150K 13914 Ŧ • 100K 12607 90.6 43.8 5516 10717 ▼ T FSC-A V T FSC-A 8105 8559 10487 Array_Std3_003.fcs Array_Std4_004.fcs Array_Std5_005.fcs Color Axis Color Axis Array Std6 006.fcs 8640 PE-A PE-A Array_Std5_006.fcs Array_Std7_007.fcs Array_Std8_008.fcs Array_Std9_009.fcs 9226 8736 9026 Options
 Extinct Gate
 Statistics - Count: 12607 / 13914 90.6 G Options × Active Gate ¥ ¥ Array_Std10_010.fcs 9265 tics - Count 13914 / 13914 * 1009 Array_Neg_011.fcs 11008
- 3. From the "Single beads" population, gate on "Large and Medium beads".

4. Within the "Large and Medium beads" parent gate, create each target bead populations using SSC(Linear) by APC(Log). Adjust axis settings to allow separation of targets populations.

🖋 2020-02-25 RayBio Multiplex Antibody Bead Array	.wsp	– 🗆 ×	🦨 Array_Std1_001.fcs: Single beads/Large and Medium Beads - Fl 🚽 🗌
			File Edit Graph Display Go Help
FlowJo File Edit Workspace	Tools Configure	M 💙 ? 🖡	
[+] Create Group Oreferences Add Keyword Keyword	Annotate Experiment Plate Editor Experiment	P Help V	> () > () Single beads > () Large and Medium >
Group	Size Role		
{ii} All Samples	11	Test	2006
{ G} Array	11	Test	200K - 20
{ Expensation	0	Compensation	
1mg compensation	U	Compensation	150K -
× •			C1R Slam6 IgM TNFRSF17 Sldec6 TNFRSF4
Name	Statistic	#Cells	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
♦ O _		13914 ^	
Single beads	90.6	12607	50K -
Carge and Medium Beads	43.8	5516	
© C1R	10.7	589	
© CCL21	4.01	221	0
© CD22	3.25	179	10 ² 10 ³ 10 ⁴
© CD23 © CD137	4.79	264 393	
© CD137	3.32	183	
© CXCL13	4.93	272	RayBright Red 647-A 🔻 T
© PCRLS	9.21	508	Color Map Axis
© Siglec6	9.21	643	Color Axis
Signeco	11.7	607	
Siamo Siamo TNFRSF4	11.0	594	PE-A
© INFRSF4	13.5	745	
Array_Std2_002.fcs	13.5	10717	G Options
Array_Std2_002.10s		8105	Active Gate
Allay_Slub_003.1Cs			

5. For each population, add the "Median" (MFI) statistics for the PE-A channel as shown in the picture.

2020	-02-25 RayBio Multiplex Antibo	ody Bead Array.wsp			- 🗆 X				
1=	FlowJo File Edit	Workspace Tool	ls Configure			3			
3			notate Experiment						
	Samples ~ Layout Editor	+ Pla	ate Editor	Biology Hell	2				
roup			Size F	Role		1			
	All Samples		11		Te				
{[]}			11		Te		Add Statistic		
	Compensation		0		Compensatio	n	Choose a statistic and any Press the Add button to app	applicable parameters below. sly them to your analysis	
							Median	Population	
•						-	Mean	😪 C1R +	
•	Name		Statistic		#Cells		Geometric Mean	Parameter	
	▼ Array_Std1_001.fcs				13914		Robust CV	FSC-A	
	▼ ③ Single beads			90.6	12607		Robust SD	FSC-H	
	▼ ③ Large and Medium	Beads		43.8	5516		CV	FSC-W	
	③ C1R				589		SD Percentile	SSC-A	
	@ CCL21	Сору		Ctrl+C	221		Median Abs Dev	SSC-H	
	@ CD22	Paste		Ctrl+V	179		Freq. of Parent	SSC-W	
	© CD23	Rename		Ctrl+R	264		Freq. of Grandparent	PE-A PE-H	
	© CD137				393		Freq. of	PE-H PE-W	
	© CXCL13	Clear		Ctrl+Delete	183		Freq. of Total	RayBright Red 647-A	
	© FCRL3	Duplicate Popul	lation		272		Count	RayBright Red 647-H	
	(i) IgM	Add Keyword		Ctrl+Shift+I	508		Mode	RayBright Red 647-W	
	© light © Siglec6			Ctrl+B				Time	
	Siglecs Slamf6	Add Statistic		CIII+B	643			Event#	
		Inspect Op	en the Add Statistic	dialog for selec	ted sample(s), con				
	TNFRSF4	Aspecta Cop	and a read statistic	a short for select	004				
0		Copy value to g	roup		745				
	Array_Std2_002.fcs	Copy analysis to		Ctrl+Shift+G	10717				
	Array_Std3_003.fcs	Copy analysis to	group	Cur+shift+G	8105			Percentile	
	Array_Std4_004.fcs	Select Equivalen	t Nodes	Ctrl+Shift+E	8559				
00	Array_Std5_005.fcs			Contra State C	10487			Freq. of S Choose *	
	Array_Std6_006.fcs	Reset Column V			8640				
00	Array_Std7_007.fcs	Search for FCS f	iles		9226		Help		Add Clos
00	Array_Std8_008.fcs	Export / Concat	enate Populations	Ctrl+E	8736				
00	Array_Std9_009.fcs				9026				
OD	Array_Std10_010.fcs	BifurGate			9265	1			

- 6. Add the "Median" (MFI of PE-A) population to all target groups.
- 7. Copy all gates from Std1 to the "All samples" group at the top to apply this gating strategy to all samples.

🕼 2020-02-25 RayBio Multiplex Antibody Bead Array.w	sp	- 🗆 X	🌌 2020-02-25 RayBio Multiplex Antibody Bead Array.wsp		- 🗆 ×
			🚂 🤈 r 📲 🕂 🛍 🔳 L 💿 💴 🔵		
FlowJo File Edit Workspace	Tools Configure	N 🗘 ? 🗊	FlowJo File Edit Workspace Tool	ls Configure	₩ ♡ ?
1	Annotate Experiment		🖡 New Workspace 🔲 Table Editor 🕒 🖉 An	notate Experiment	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	F		ate Editor	8. ?
Add Samples Y Layout Editor Add	Plate Editor		Add		75 •
+) Create Group V Preferences Keyword	Biology Hel	2	[+] Create Group VPreferences Keyword	81	iology Help
Navigate E	xperiment		Navigate Exper	riment	
iroup	Size Role		Group	Size Role	
{ All Samples	11	Test	▼ {□} All Samples	11	Tes
{□} Array	11	Test			
E Compensation	0	Compensation			
			▼ ③ C1R		
		1	∑ Median : PE-A		
•			Σ Median : PE-A		
Name	Statistic	#Cells			
	43.8	5516 ^	Σ Median : PE-A		
▼ ③ C1R	10.7	589			
Σ Median : PE-A	20230		∑ Median : PE-A		
	4.01	221	▼ ③ CD137		
∑ Median : PE-A	42798		Σ Median : PE-A		
▼ ③ CD22	3.25	179	V CXCL13		
∑ Median : PE-A	56813		∑ Median : PE-A		
	4.79	264	V S FCRL3		
Σ Median : PE-A	38353		∑ Median : PE-A		
	7.12	393	🖝 🕄 IgM		
∑ Median : PE-A	31464		∑ Median : PE-A		
CXCL13	3.32	183	▼ ③ Siglec6		
Σ Median : PE-A	46893		∑ Median : PE-A		
V 🐨 FCRL3	4.93	272	V Slamf6		
Σ Median : PE-A	38823		∑ Median : PE-A		
🐨 🐨 IgM	9.21	508	TNFRSF4		
∑ Median : PE-A	18919		∑ Median : PE-A		
▼ ③ Siglec6	11.7	643	V INFRSF17		
∑ Median : PE-A	17531		∑ Median : PE-A		
	11.0	607	(I) Array	11	Ter
∑ Median : PE-A	17425		Name	Statistic	#Cells
TNFRSF4	10.8	594	Array_Std1_001.fcs		1391
∑ Median : PE-A	18074		Single beads	9	90.6 1260
TNFRSF17	13.5	745			43.8 551
Σ Median : PE-A	16345				

8. Click "Table Editor" as shown in the red frame to open the table. Drag the icon indicating the Median of each population to the table (see the table on right side).

			-	iditor Edit Visualize			2 頁 卷
	ools Configure	📕 💙 ? 🖬	+ 00	Table Gro	All Samples *		Display ·
	Annotate Experiment	2		Iter	rate by Sam *		eate Excel
Add Samples Y Layout Editor +	Plate Editor	:	_				able Destination: F GiluseriTable
(+) Create Group O Preferences Keyword	Biology H	lelp		Tables	Iteration		Output
	periment	~	Column	Population	Statistic	Parameter	Name
Sroup Table Editor	ze Role						
Single bead Open the Table Editor		0	1Σ	Single beads/Large and Medium Beads/C1R	Median	PE-A	
▼ ③ Large at			2 Σ	Single beads/Large and Medium Beads/CCL21	Median	PE-A	
▼ ③ C1R Shortout Key: Ctrl+T							
∑ Median : PE-A			зΣ	Single beads/Large and Medium Beads/CD22	Median	PE-A	
▼ ⁽³⁾ CCL21			4 Σ	Single beads/Large and Medium Beads/CD23	Median	PE-A	
∑ Median : PE-A		*	. 7	ompre vedos Large and Medium BeadS/CU23	Median	PE-A	
Name	Statistic	#Cells	5Σ	Single beads/Large and Medium Beads/CD137	Median	PE-A	
Array_Std1_001.fcs		13914 ^	-				
Single beads	90.6	12607	eΣ	Single beads/Large and Medium Beads/CXCL13	Median	PE-A	
G Large and Medium Beads	43.8	5516	7Σ	Single beads/Large and Medium Beads/FCRL3	Median	PE-A	
▼ ③ C1R	10.7	589					
∑ Median : PE-A ▼ ③ CCL21	20230	221	8 Σ	Single beads/Large and Medium Beads/IgM	Median	PE-A	
Σ Median : PE-A	4.01	221	sΣ				
▼ (3) CD22	3.25	179	aΣ	Single beads/Large and Medium Beads/Siglec6	Median	PE-A	
Σ Median : PE-A	56813	115	10 E	Single beads/Large and Medium Beads/Slamf6	Median	PE-A	
▼ ③ CD23	4.79	264					
∑ Median : PE-A	38353		11 Σ	Single beads/Large and Medium Beads/TNFRSF4	Median	PE-A	
▼ ③ CD137	7.12	393	12 X	Single beads/Large and Medium Beads/TNFRSF17	7 Median	PE-A	
∑ Median : PE-A	31464		.2 1	ongre besos Large and Medium Beads I NPROP II	mestan	1.605	
▼ [®] CXCL13	3.32	183					
∑ Median : PE-A	46893						
▼ ③ FCRL3	4.93	272					
∑ Median : PE-A ▼ ③ IgM	38823	508					
∑ Median : PE-A	9.21	508					
✓ ③ Siglec6	10919	643					
Σ Median : PE-A	17531	045					
▼ ③ Slamf6	11.0	607					
Σ Median : PE-A	17425						
TNFRSF4	10.8	594					
Σ Median : PE-A	18074						
TNFRSF17	13.5	745 ¥					

9. At top of table, choose "Group" menu and pick "Array" group.

+ 🛙	Table	Group	Array •			Ö	Display •		
		Iterate by	Sam •				kspace Selection} Imples	G:\user\Table	
	Tables		Iteration		~	Array			
Col	Population		Statistic	P	a	Com	pensation	lame	
1Σ	Single beads/Large and Medium Beads/C1R		Median	F	E-A				
2 Σ	Single beads/Large and Medium Beads/CCL21		Median	F	E-A				
зΣ	Single beads/Large and Medium Beads/CD22		Median	F	E-A				
4 Σ	Single beads/Large and Medium Beads/CD23		Median	F	E-A				
5Σ	Single beads/Large and Medium Beads/CD137		Median	F	E-A				
ε Σ	Single beads/Large and Medium Beads/CXCL13		Median	F	E-A				
7Σ	Single beads/Large and Medium Beads/FCRL3		Median	F	E-A				
8 Σ	Single beads/Large and Medium Beads/IgM		Median	F	E-A				
sΣ	Single beads/Large and Medium Beads/Sigleo8		Median	F	E-A				
10 E	Single beads/Large and Medium Beads/Slamf6		Median	F	E-A				
11 Σ	Single beads/Large and Medium Beads/TNFRSF4		Median	F	E-A				
12 E	Single beads/Large and Medium Beads/TNFRSF17		Median		E-A				

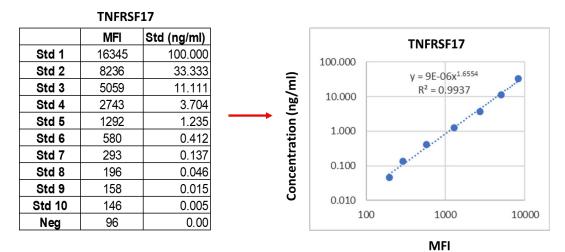
🕼 Fi	owJo Tables: 2020-02-25 RayBio Multiplex Antibo	ody Bead Array.wsp		– 🗆 X
Table	e Editor Edit Visualize			🕸 📕 💛 ? ⊣
+0	Table c	Broup Array •	👸 🖻 Disp	play •
	1	terate by Sam •	Create	To Printer
-			Table Destina	
	Tables	Iteration		Output to File
Col	Population	Statistic	Parameter	Name Content Layout
1Σ	Single beads/Large and Medium Beads/C1R	Median	PE-A	To Clipboard
2 Σ	Single beads/Large and Medium Beads/CCL21	Median	PE-A	
зΣ	Single beads/Large and Medium Beads/CD22	Median	PE-A	
4 Σ	Single beads/Large and Medium Beads/CD23	Median	PE-A	
5 Σ	Single beads/Large and Medium Beads/CD137	Median	PE-A	
6Σ	Single beads/Large and Medium Beads/CXCL13	Median	PE-A	
7 E	Single beads/Large and Medium Beads/FCRL3	Median	PE-A	
8 Σ	Single beads/Large and Medium Beads/IgM	Median	PE-A	
9 E	Single beads/Large and Medium Beads/Siglec6	Median	PE-A	
10 E	Single beads/Large and Medium Beads/Slamf0	Median	PE-A	
11 Σ	Single beads/Large and Medium Beads/TNFRSF4	Median	PE-A	
12 E	Single beads/Large and Medium Beads/TNFRSF17	Median	PE-A	

10. In "Output Target" menu, choose "To file".

11. In "Output Format" menu, choose "Excel".

+ 0) Table	Group Iterate by	Array • Sam •		Create	Excel V	
	Tables		Iteration		Table	Text CSV Excel	G:\user\Table
Col	Population		Statistic	Param	eter	HTML	Name
1Σ	Single beads/Large and Medium Beads/C1R		Median	PE-A		SQL XML Excel	
2Σ	Single beads/Large and Medium Beads/CCL21		Median	PE-A		XML	
зΣ	Single beads/Large and Medium Beads/CD22		Median	PE-A			
4 Σ	Single beads/Large and Medium Beads/CD23		Median	PE-A			
5Σ	Single beads/Large and Medium Beads/CD137		Median	PE-A			
6Σ	Single beads/Large and Medium Beads/CXCL13		Median	PE-A			
7Σ	Single beads/Large and Medium Beads/FCRL3		Median	PE-A			
8 Σ	Single beads/Large and Medium Beads/IgM		Median	PE-A			
9 Σ	Single beads/Large and Medium Beads/Siglec6		Median	PE-A			
10 Σ	Single beads/Large and Medium Beads/Slamf6		Median	PE-A			
11 Σ	Single beads/Large and Medium Beads/TNFRSF4		Median	PE-A			
12 E	Single beads/Large and Medium Beads/TNFRSF1		Median	PE-A			

+ 0	G	arate by Sam *	Create Table	Excel Destination	~		
	Tables	Iterati	ion	Out	put		
Col 1 Σ	Population Single beads/Large and Medium Beads/C1R	Statistic	Parameter PE-A	de sy	Click this button to select a new output destination on a local or mounted file system. G:\user\Table		
2Σ	Single beads/Large and Medium Beads/CCL21	Median	PE-A				
зΣ	Single beads/Large and Medium Beads/CD22	Median	PE-A				
4 Σ	Single beads/Large and Medium Beads/CD23	Median	PE-A				
5Σ	Single beads/Large and Medium Beads/CD137	Median	PE-A	PE-A			
Σ	Single beads/Large and Medium Beads/CXCL13	Median	PE-A				
7Σ	Single beads/Large and Medium Beads/FCRL3	Median	PE-A				
Σ	Single beads/Large and Medium Beads/IgM	Median	PE-A				
Σ	Single beads/Large and Medium Beads/Siglec6	Median	PE-A				
10 E	Single beads/Large and Medium Beads/Slamf6	Median	PE-A				
11 Σ	Single beads/Large and Medium Beads/TNFRSF4	Median	PE-A				
12 Σ	Single beads/Large and Medium Beads/TNFRSF17	Median	PE-A				


12. In "Output Destination" menu, choose a location to save the file.

13. Click "Create Table" icon to export Excel table.

Median Fluorescence Intensity (MFI) of PE-A

	C1R	CCL21	CD22	CD23	CD137	CXCL13	FCRL3	lgM	Siglec6	Slamf6	TNFRSF4	TNFRSF17
Array_Std1_001.fcs	20230	42798	56813	38353	31464	46893	38823	18919	17531	17425	18074	16345
Array_Std2_002.fcs	10040	19985	29157	17425	13368	21831	18129	9475	8674	8112	9475	8236
Array_Std3_003.fcs	6358	11445	17214	10477	7656	13287	10477	5838	5264	4952	5750	5059
Array_Std4_004.fcs	3754	6243	9979	5646	3893	7941	5838	3184	2897	2636	3014	2743
Array_Std5_005.fcs	2035	3005	5697	2810	2143	4520	2734	1538	1412	1289	1469	1292
Array_Std6_006.fcs	925	1289	3395	1312	1047	2853	1209	671	626	570	661	580
Array_Std7_007.fcs	444	607	2230	636	561	1920	563	342	311	279	345	293
Array_Std8_008.fcs	267	436	1644	449	417	1501	401	218	197	177	234	196
Array_Std9_009.fcs	205	353	1835	370	346	965	306	174	167	145	198	158
Array_Std10_010.fcs	181	324	1649	360	330	587	300	162	155	134	187	146
Array_Neg_011.fcs	135	244	1575	266	254	234	209	108	100	82.6	128	95.9

14. In Excel, create a standard curve (log-log mode preferred) for each analyte based on MFI and calculate values for all analytes of each sample. A representative analysis is shown for one of the analytes.

15. Calculate the concentration of each analyte of each sample based on the regression curve formula, or a different formula of your choice (linear, multiparameter, etc). It's recommended that researchers create a template in Excel, so that further assays can be easily analyzed in subsequent experiments. for the same assay in the future.

VII. 8-Point Standard Protein Concentrations

After reconstitution of the lyophilized protein standard mix, the 8-point protein concentration used for generating the standard curve of a given antigen is listed below.

Concentration of Standards									
Antigen	Negative	Std7	Std6	Std5	Std4	Std3	Std2	Std1	Unit
CXCL13	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL
FCRL3	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL
CCL21	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL
CD23	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL
CD137	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL
C1R	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL
Slamf6	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL
lgM	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL
CD22	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL
TNFRSF17	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL
Siglec6	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL
TNFRSF4	0.00	0.14	0.41	1.23	3.70	11.11	33.33	100.00	ng/mL

Concentration of standards

VIII. Troubleshooting Guide

Problem	Cause	Recommendation				
	Inadequate detection	Increase sample and beads incubation time.				
	Detection antibody over diluted	Increase detection antibody concentration.				
Weak Signal	Too low protein concentration in sample	Don't over dilute samples.				
Weak Signal	Too low protein concentration in sample	Don't make too low dilution or concentrate sample.				
	Improper storage of kit	Store kit as suggested temperature.				
	Reagent evaporation	Cover the incubation plate with adhesive film during incubation.				
Poor	Cross-contamination from neighboring wells	Avoid overflowing wash buffer.				
standard	Too much detection antibody	Optimize the detection antibody				
curve	Standard protein degraded or not property diluted	Reconstitute the lyophilized standard well on ice before making serial dilutions.				
High	Improper flow cytometer setup and optimization	Run QC-beads before assay. Make sure high end signal not out of linear range.				
background	Insufficient wash	Increase wash time and use more wash buffer.				
	Too much detection antibody	Optimize the detection antibody.				

IX. Note:

RayBio[®] is the trademark of RayBiotech Life, Inc.

This product is intended for research only and is not to be used for clinical diagnosis. Our produces may not be resold, modified for resale, or used to manufacture commercial products without written approval by RayBiotech Life, Inc.

Under no circumstances shall RayBiotech be liable for any damages arising out of the use of the materials.

Products are guaranteed for three months from the date of purchase when handled and stored properly. In the event of any defect in quality or merchantability, RayBiotech's liability to buyer for any claim relating to products shall be limited to replacement or refund of the purchase price.

This product is for research use only.

©2020 RayBiotech Life, Inc.