Arabidopsis thaliana amiRNA library

CONTENTS

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Description</td>
<td>1</td>
</tr>
<tr>
<td>Background and Design Information</td>
<td>1</td>
</tr>
<tr>
<td>Vector Information</td>
<td>1</td>
</tr>
<tr>
<td>Vector Map - pAmiR</td>
<td>3</td>
</tr>
<tr>
<td>Antibiotic Resistance</td>
<td>3</td>
</tr>
<tr>
<td>Quality Control</td>
<td>3</td>
</tr>
<tr>
<td>Protocol I - Replication</td>
<td>4</td>
</tr>
<tr>
<td>Protocol II - Plasmid Preparation</td>
<td>5</td>
</tr>
<tr>
<td>Protocol III - Restriction Digest</td>
<td>6</td>
</tr>
<tr>
<td>Protocol IV - Agrobacterium Electroporation</td>
<td>6</td>
</tr>
<tr>
<td>Protocol V - Arabidopsis Transformation</td>
<td>7</td>
</tr>
<tr>
<td>Protocol VI - Selection of Primary Transformants</td>
<td>8</td>
</tr>
<tr>
<td>Related Reagents</td>
<td>8</td>
</tr>
<tr>
<td>FAQs</td>
<td>9</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>9</td>
</tr>
<tr>
<td>References</td>
<td>10</td>
</tr>
<tr>
<td>Licensing Information</td>
<td>10</td>
</tr>
</tbody>
</table>

PRODUCT DESCRIPTION

The Arabidopsis thaliana amiRNA library is a collection of artificial microRNAs (amiRNAs) developed by Dr. Greg Hannon at Cold Spring Harbor Laboratories (CSHL) in collaboration with Drs. Rob Martienssen and Dick McCombie at CSHL and the Weigel lab at the Max Planck Institute for Developmental Biology. This resource is being constructed at CSHL and will eventually target 22,000 Arabidopsis genes with three constructs per gene.

This collection is the first genome-wide resource for plant RNAi and provides an excellent tool for gene silencing in Arabidopsis due to the specificity and predictability of the effects of plant amiRNA.

BACKGROUND AND DESIGN INFORMATION

The amiRNA design is based on the work of Detlof Wiegel and colleagues at the Max Planck Institute for Developmental Biology. amiRNA constructs in the Arabidopsis thaliana amiRNA library are expressed in a miR319a backbone, engineered with unique EcoRI and HindIII restriction sites and cloned into pAmiR, a modified version of the pGREEN vector. Design elements include a uridine at position 1, and if possible, an adenine at position 10 both of which are overrepresented among natural plant miRNAs and highly efficient siRNAs (Mallory, Reinhart et al. 2004; Reynolds, Leake et al. 2004). The amiRNAs also display 5’ instability relative to their miRNA, so that the correct sequence would be incorporated into RISC. To reduce the likelihood that an amiRNA would act as primer for RNA-dependent RNA polymerases, and thereby trigger secondary RNAi, between one and three mismatches to the target genes were introduced in the 3’ part of the amiRNAs.

These amiRNAs have been shown to be effectively produced from their precursors and processed as the intended 21mer (Schwab, Palatnik et al. 2005; Schwab, Ossowski et al.)
amiRNAs are processed by DICER-LIKE1 (DCL1) in plants producing a stable RNA that is then incorporated into the silencing complex RISC triggering the transcript cleavage and degradation of the target gene. Extensive validation of the amiRNA design in producing phenotypes, decreasing RNA levels and altering the expression of downstream target genes is detailed in Schwab, Palatnik et al. 2005; and Schwab, Ossowski et al. 2006.

VECTOR INFORMATION
To enable the efficient and convenient use of artificial microRNAs (amiRNAs), synthesized hairpins were cloned into a binary plasmid conferring strong and constitutive expression that can directly serve for plant transformation. For that purpose the 35S promoter together with a 3’ocs (Octopine synthase terminator) terminator were transferred into a widely used pGreenII (http://www.pgreen.ac.uk) binary variant that confers Basta® resistance to transgenic plants called pAmiR™, (Figures 1-2, and Table 1). Promoter and terminator regions encompass genomic sequences surrounding and containing the miR319a hairpin, which is the template for amiRNA construction. Single base-pair substitutions that generate unique restriction sites have been engineered to separate the hairpin from flanking sequences (EcoRI and HindIII, see Figure 2), such that newly synthesized amiRNA hairpins can be embedded into the miR319a genomic context. These sites do not affect the silencing potential of the hairpin precursor, i.e. they do not interfere with downstream phenotypes that are caused by small RNA accumulation (both when using the miR319a backbone alone and also when an amiRNA is engineered). Gateway® AttB as well as conventional restriction sites 5’ and 3’ of the complete amiRNA precursor allow the transfer to other plasmids, such as those with more restrictively active promoters.

Figure 1. pAmiR vector

Table 1. Features of the pAmiR™ vector

<table>
<thead>
<tr>
<th>Vector Element</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left Border</td>
<td>T-DNA boundary</td>
</tr>
<tr>
<td>35S promoter</td>
<td>Promoter for amiRNA expression in plants</td>
</tr>
<tr>
<td>AttB sites</td>
<td>Gateway® cloning sites</td>
</tr>
<tr>
<td>3’ocs</td>
<td>Octopine synthase terminator</td>
</tr>
<tr>
<td>Basta® resistance</td>
<td>Plant selection marker</td>
</tr>
<tr>
<td>pSa origin</td>
<td>Origin of replication for E.coli and Agrobacterium</td>
</tr>
<tr>
<td>Right Border</td>
<td>T-DNA boundary</td>
</tr>
<tr>
<td>Spectinomycin resistance</td>
<td>Bacterial selection marker</td>
</tr>
<tr>
<td>pUC origin</td>
<td>Origin of replication for E.coli</td>
</tr>
</tbody>
</table>
Figure 2. Detailed vector map of pAmiRTM vector.

ANTIBIOTIC RESISTANCE

pAmiRTM contains 2 antibiotic resistance markers (Table 2).

Table 2. Antibiotic resistances conveyed by pAmiR

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Concentration</th>
<th>Utility</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectinomycin</td>
<td>100µg/ml</td>
<td>Bacterial selection marker</td>
</tr>
<tr>
<td>Basta®</td>
<td>variable</td>
<td>Plant selectable marker</td>
</tr>
</tbody>
</table>

QUALITY CONTROL

Constructs have been sequenced verified, digested for correct size (Figure 3) and tested for phage contamination.
Figure 3. Sample agarose gel of pAmiR digestion performed for quality control. Alternating lanes are undigested and digested using NotI. NotI digestion results in a 4.3kb and ~2kb band (2kb band may vary slightly with size of miRNA).

PROTOCOL I - REPLICATION

Table 3. Materials for plate replication

<table>
<thead>
<tr>
<th>Item</th>
<th>Vendor</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB-Lennox broth (low salt)</td>
<td>VWR</td>
<td>EM1.00547.0500</td>
</tr>
<tr>
<td>Peptone, granulated, 2kg - Difco</td>
<td>VWR</td>
<td>90000-368</td>
</tr>
<tr>
<td>Yeast Extract, 500g, granulated</td>
<td>VWR</td>
<td>EM1.03753.0500</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sigma</td>
<td>S-3014</td>
</tr>
<tr>
<td>Glycerol</td>
<td>VWR</td>
<td>EM-2200 or 80030-956</td>
</tr>
<tr>
<td>Spectinomycin</td>
<td>VWR</td>
<td>Calbiochem 567570</td>
</tr>
<tr>
<td>96 well microplates</td>
<td>Nunc</td>
<td>260860</td>
</tr>
<tr>
<td>Aluminum seals</td>
<td>Nunc</td>
<td>276014</td>
</tr>
<tr>
<td>Disposable replicators</td>
<td>Genetix</td>
<td>X5054</td>
</tr>
<tr>
<td>Disposable replicators</td>
<td>Scinomix</td>
<td>SCI-5010-OS</td>
</tr>
</tbody>
</table>

For archive replication, grow all amiRNA clones at 37°C in LB-Lennox (low salt) media plus 100µg/ml spectinomycin. Prepare media with 8% glycerol* and the appropriate antibiotics.

Replication of plates

Prepare target plates by dispensing ~160µl of LB-Lennox (low salt) media supplemented with 8% glycerol* and appropriate antibiotic (100µg/ml spectinomycin).

Prepare source plates:
1. Remove foil seals while the source plates are still frozen. This minimizes cross-contamination.
2. Thaw the source plates with the lid on. Wipe any condensation underneath the lid with a paper wipe soaked in ethanol.
Replicate:
1. Gently place a disposable replicator in the thawed source plate and lightly move the replicator around inside the well to mix the culture. Make sure to scrape the bottom of the well.
2. Gently remove the replicator from the source plate and gently place in the target plate and mix in the same manner to transfer cells.
3. Dispose of the replicator.
4. Place the lids back on the source plates and target plates.
5. Repeat steps 1-4 until all plates have been replicated.
6. Return the source plates to the -80°C freezer.
7. Place the inoculated target plates in a 37°C incubator without shaking for 18-19 hours.

Freeze at -80°C for long term storage. Avoid long periods of storage at room temperature or higher in order to control background recombination products.

*Glycerol should be omitted from the media if you are culturing for plasmid preparation. If making copies of the constructs for long term storage at -80°C, 8% glycerol is required.

PROTOCOL II - PLASMID PREPARATION
Culture conditions for individual plasmid preparations
For plasmid preparation, grow all pAmiR™ clones at 37°C in LB broth (low salt) media plus 100µg/ml spectinomycin.

LB broth (low salt) media preparation
<table>
<thead>
<tr>
<th>Component</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB-Broth-Lennox</td>
<td>10g/l</td>
</tr>
<tr>
<td>Peptone</td>
<td>10g/l</td>
</tr>
<tr>
<td>Yeast Extract</td>
<td>5g/l</td>
</tr>
<tr>
<td>Salt</td>
<td>5g/l</td>
</tr>
<tr>
<td></td>
<td>Appropriate antibiotic(s) at recommended concentration(s)</td>
</tr>
</tbody>
</table>

Most plasmid mini-prep kits recommend a culture volume of 1-10ml for good yield. For pAmiR constructs, 5ml of culture can be used for one plasmid mini-prep generally producing 5-10µg of plasmid DNA.

1. Upon receiving your glycerol stock(s) containing the shRNAmir of interest store at -80°C until ready to begin.
2. To prepare plasmid DNA first thaw your glycerol stock culture and pulse vortex to resuspend any E. coli that may have settled to the bottom of the tube.
3. Take a 10µl inoculum from the glycerol stock into 3-5ml of 2X-LB (low salt) with 100µg/ml spectinomycin. Return the glycerol stock(s) to -80°C.

 Note: If a larger culture volume is desired, incubate the 3-5ml culture for 8 hours at 37°C with shaking and use as a starter inoculum. Dilute the starter culture 1:500-1:1000 into the larger volume.

4. Incubate at 37°C for 18-19 hours with vigorous shaking.
5. Pellet the 3-5ml culture and begin preparation of plasmid DNA.
6. Run 3-5µl of the plasmid DNA on a 1% agarose gel. pAmiR with miRNA is 6.4kp.
Culture conditions for 96 well bio-block plasmid preparation
Inoculate a 96 well bio-block containing 1ml per well of LB (low salt) media with 100µg/ml spectinomycin with 1µl of the culture. Incubate at 37°C with shaking (~170-200rpm). We have observed that incubation times between 18-19 hours produce good plasmid yield. For plasmid preparation, follow the protocols recommended by the plasmid isolation kit manufacturer.

Note: Open Biosystems uses the above 96 well bio-block plasmid preparation protocol in conjunction with a Qiagen Turbo kit (catalog no. 27191). We use 2 bio-blocks combined, do not perform the optional wash and elute the DNA in water.

PROTOCOL III - RESTRICTION DIGEST
The following is a sample protocol for restriction enzyme digestion using NotI for diagnostic quality control of pAmiR vectors. A digestion with NotI should result in a 4.3kb and a ~2kb band (2kb band may vary slightly with size of miRNA).

1. Using filtered pipette tips and sterile conditions add the following components, in the order stated, to a sterile PCR thin-wall tube.

<table>
<thead>
<tr>
<th>Component</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterile, nuclease-free water</td>
<td>Xµl</td>
</tr>
<tr>
<td>Restriction enzyme 10X buffer</td>
<td>1µl</td>
</tr>
<tr>
<td>DNA sample (400ng) in water</td>
<td>400ng</td>
</tr>
<tr>
<td>NotI 10U (NEB)</td>
<td>0.5µl</td>
</tr>
<tr>
<td>Final volume</td>
<td>20µl</td>
</tr>
</tbody>
</table>

PROTOCOL IV- AGROBACTERIUM ELECTROPORATION*
Electroporation of Agrobacterium bacteria

Table 4. Materials for electroporation

<table>
<thead>
<tr>
<th>Item</th>
<th>Vendor</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appropriate Agrobacterium strain</td>
<td>various</td>
<td>various</td>
</tr>
<tr>
<td>ice-cold sterile 10% glycerol solution (to prepare comp cells)</td>
<td>VWR</td>
<td>EM-2200 or 80030-956</td>
</tr>
<tr>
<td>liquid nitrogen</td>
<td>various</td>
<td>various</td>
</tr>
<tr>
<td>Helper plasmid pSOUP</td>
<td>various</td>
<td>various</td>
</tr>
<tr>
<td>Electroporation equipment</td>
<td>various</td>
<td>various</td>
</tr>
<tr>
<td>LB-Lennox broth (low salt)</td>
<td>VWR</td>
<td>EM1.00547.0500</td>
</tr>
<tr>
<td>Peptone, granulated, 2kg - Difco</td>
<td>VWR</td>
<td>90000-368</td>
</tr>
<tr>
<td>Yeast Extract, 500g, granulated</td>
<td>VWR</td>
<td>EM1.03753.0500</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sigma</td>
<td>S-3014</td>
</tr>
<tr>
<td>Glycerol</td>
<td>VWR</td>
<td>EM-2200 or 80030-956</td>
</tr>
<tr>
<td>Spectinomycin</td>
<td>VMR</td>
<td>Calbiochem 567570</td>
</tr>
</tbody>
</table>

* Commonly used electrocompetent strains are GV3101 (rifampicin and gentamycin resistant) (Koncz and Schell 1986) and ASE (kanamycin and chloramphenicol resistant) (Fraley et al., 1985)

Preparation of electrocompetent cells
1. Grow a small overnight culture (~5ml) in LB with appropriate antibiotics (see above). Grow at 28-30°C.
2. Inoculate a 500ml culture with these cells and grow at 28-30°C for several hours until an OD₆₀₀ of 0.5-0.7 is reached. Start this culture early in the morning to proceed in the
afternoon, or in the evening to harvest cells in the morning. The doubling time of Agrobacteria at this temperature is 2-3h.

3. Cool cells down on ice for 15 or more minutes and proceed in ice or in the coldroom for all of the following steps.

4. Harvest cells by centrifugation at 3000g for 10 minutes at 4°C (cool rotor down before use).

5. Wash pellets twice with 1 volume pre-cooled 10% glycerol solution and spin as above.

6. Resuspend pellets in 2ml 10% glycerol and combine.

7. Prepare 40µl aliquots and freeze rapidly in liquid nitrogen.

8. Store cells at -80°C.

Electroporation
1. Thaw cells on ice (1 aliquot per plasmid)
2. Add 1µl of clean plasmid DNA and 1µl of helper plasmid DNA
3. Mix and transfer into pre-cooled electroporation cuvette
4. Electroporate using standard settings for E.coli (pulse around 5msec)
5. Immediately add 1ml of LB and transfer to a reaction tube (2ml or 15ml)
6. Incubate for 2-3 hours at 28-30°C with gentle agitation
7. Collect cells by spinning briefly at 3000g
8. Plate all cells on LB plates with appropriate antibiotics
9. Incubate for 1.5 to 3 days at 28-30°C
10. Optional: re-streak colonies on a new plate and incubate as before

PROTOCOL V- ARABIDOPSIS TRANSFORMATION*
Generating transgenic Arabidopsis thaliana plants with the amiRNA binary plasmids

Table 5. Materials for transformation

<table>
<thead>
<tr>
<th>Item</th>
<th>Vendor</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB-Lennox broth (low salt)</td>
<td>VWR</td>
<td>EM1.00547.0500</td>
</tr>
<tr>
<td>Peptone, granulated, 2kg - Difco</td>
<td>VWR</td>
<td>90000-368</td>
</tr>
<tr>
<td>Yeast Extract, 500g, granulated</td>
<td>VWR</td>
<td>EM1.03753.0500</td>
</tr>
<tr>
<td>NaCl</td>
<td>Sigma</td>
<td>S-3014</td>
</tr>
<tr>
<td>Murashige and Skoog Salts</td>
<td>Sigma</td>
<td>various</td>
</tr>
<tr>
<td>Sucrose</td>
<td>VWR</td>
<td>various</td>
</tr>
<tr>
<td>Silwet L-77 (Lehle Seeds)</td>
<td>various</td>
<td>various</td>
</tr>
<tr>
<td>1x Gamborg’s B5 vitamins</td>
<td>various</td>
<td>various</td>
</tr>
<tr>
<td>Benzylamino purine</td>
<td>various</td>
<td>various</td>
</tr>
</tbody>
</table>

Infiltration medium
1/2x Murashige and Skoog Salts
5% sucrose
optional:
1x Gamborg’s B5 vitamins
0.044µM benzylamino purine (stock solution in DMSO)
pH to 5.7 with 1M KOH
add 50µl/L Silwet L-77
Preparation of *Arabidopsis* plants for transformation

1. Grow plants in soil such that they have sufficient space to grow (rosettes should not overlap). Chose pots that correspond in size to a container that will contain the *Agrobacterium* solution for dipping. Grow 10-50 plants per plasmid.
2. Cut the first inflorescences such that more secondary shoots are formed.
3. Grow a small liquid culture from a single *Agrobacterium* colony (3-10ml) in LB with antibiotics (12-24h). Start roughly 3 days after removal of plant inflorescences.
4. Carry out either minipreps or PCR to verify the presence of the plasmids.
5. Prepare glycerol stocks (15% final glycerol concentration) from positive cultures.
6. Re-grow the positive culture and use 200µl to 1ml for inoculation of a large 200-300ml culture. Grow this culture for 12-24h until OD$_{600}$ is >1.
7. Pellet cells by centrifugation at 3000g for 10minutes.
8. Resuspend in 200-400ml infiltration medium.
9. Transfer into a convenient container, e.g. an empty tip box.
10. Dip plant inflorescences into *Agrobacterium*-containing solution for 15-30 seconds.
11. Lay pots sideways into growth flats and cover for 1 day.
12. Remove cover and return plants to their normal growth conditions.
13. Collect seeds after ~3 weeks.

PROTOCOL VI- SELECTION OF PRIMARY TRANSFORMANTS

The plasmids confer Basta resistance to transgenic plants. These can be selected directly on soil.

Table 6. Materials for transformant selection

<table>
<thead>
<tr>
<th>Item</th>
<th>Vendor</th>
<th>Catalog Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeds</td>
<td>various</td>
<td>various</td>
</tr>
<tr>
<td>Basta solution</td>
<td>Scotts Company- Finale</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Selection of primary transformants

1. Soak soil in 1:1000 dilution of Basta.
2. Spread seeds evenly on soil.
3. Cover the tray and keep at 4°C for 2-4 days. (alternatively: transfer seeds in 15ml screw-cap tube and resuspend in 0.1% agar solution, keep at 4°C for 2-4 days, then sow)
4. Move tray into normal growth conditions.
5. After several days, spray plants with 1:1000 Basta solution.
6. Selection should be evident after 7-10 days.
7. Transplant transgenic seedlings to new pots.

Protocols courtesy of Rebecca Schwab, CSHL

RELATED REAGENTS

Table 7. Related Reagents

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Vendor</th>
<th>Catalog number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arabidopsis thaliana amiRNA individual clone</td>
<td>Open Biosystems</td>
<td>AMR4844</td>
</tr>
<tr>
<td>Arabidopsis thaliana amiRNA library</td>
<td>Open Biosystems</td>
<td>AMR4933</td>
</tr>
</tbody>
</table>
FAQS
For answers to questions that are not addressed here, please email technical support at info@openbiosystems.com with your question, your sales order or purchase order number and the catalog number or clone ID of the construct or collection with which you are having trouble.

Useful Websites:
For more information on the *Arabidopsis thaliana* amiRNA library, visit http://www.openbiosystems.com/RNAi/ArabidopsisthalianaamiRNA/ and http://2010.cshl.edu/scripts/main2.pl

For more information on amiRNA design, visit: http://wmd2.weigelworld.org/cgi-bin/mirnatoools.pl?page=8#mirnaFunction

For genetic and molecular biology data for *Arabidopsis* visit: http://www.Arabidopsis.org/

What clones are part of my collection?
A CD containing the data for this collection will be shipped with each collection. This file contains the location and accession number for each construct in the collection. This data file can be downloaded from the *Arabidopsis thaliana* amiRNA product page: http://www.openbiosystems.com/collateral/rnai/pi/Arabidopsis_manual.pdf

Where can I find the sequence of an individual amiRNA construct?
If you are looking for the sequence an individual amiRµA construct, you can use the gene search. Just enter the catalog number or clone ID of your construct into the gene search on the Open Biosystems website, hit submit and then click on the query result. If you then click on the oligo ID and then click on the word “sequence” in the details grid, the hairpin sequence is listed. If you are looking for the sequence of several shRµAmir constructs, you can access this information in the data file of the collection. This data file can be downloaded from the product page: http://www.openbiosystems.com/RNAi/ArabidopsisthalianaamiRNA/

Which antibiotic should I use?
You should grow all *Arabidopsis thaliana* amiRNA constructs in 100µg/ml spectinomycin.

Where can I get more information on the design of the amiRNAs in this collection?
See the reference (Schwab, Palatnik et al. 2005; Schwab, Ossowski et al. 2006).

What if I want to design my own amiRNA?
There is a design tool called the Web MicroRNA Designer for use with *Arabidopsis* amiRNA design at the following link: http://wmd2.weigelworld.org

See also the references Schwab, Palatnik et al. 2005; and Schwab, Ossowski et al. 2006.
How can I detect translational inhibition caused by amiRNAs?
It is recommended to track expression changes of target genes via RT-QPCR using primers covering the amiRNA cleavage site.

For alternate methods of detecting translational inhibition caused by amiRNAs, please visit the following link: http://wmd2.weigelworld.org

TROUBLESHOOTING
For help with your constructs, please email technical support at info@openbiosystems.com with your sales order or purchase order number and the catalog number or clone ID of the construct with which you are having trouble.

REFERENCES

LIMITED USE LICENSES:

Limited Use Label License: Invitrogen

This product and its use is the subject of one or more of U.S. Patent Nos. 5,888,732, 6,143,557, 6,171,861, 6,270,969, and 6,277,608 and/or other pending U.S. and foreign patent applications owned by Invitrogen Corporation. The purchase of this product conveys to the buyer the non-transferable right to use the purchased amount of the product and components of the product in research conducted by the buyer (whether the buyer is an academic or for profit entity). The purchase of this product does not convey a license under any method claims in the foregoing patents or patent applications, or to use this product with any recombination sites other than those purchased from Invitrogen Corporation or its authorized distributor. The right to use methods claimed in the foregoing patents or patent applications with this product for research purposes only can only be acquired by the use of Clonase purchased from Invitrogen Corporation or its authorized distributors. The buyer cannot modify the recombination sequence(s) contained in this product for any purpose. The buyer cannot sell or otherwise transfer (a) this product, (b) its components, or (c) materials made by the employment of this product or its components to a third party or otherwise use this product or its components or materials made with this product or its components for Commercial Purposes. The buyer may transfer information or materials made through the use of this product, provided that such transfer is not for any Commercial Purpose, and that such collaborator agrees in writing (a) not to transfer such materials to any third party, and (b) to use such transferred materials and/or information solely for research and not for Commercial Purposes. Transfer of such materials and/or information to collaborators does not convey rights to practice any methods claimed in the foregoing patents or patent applications. Commercial Purposes means any activity by a party for consideration and may include, but is not limited to: (1) use of the product or its components in manufacturing; (2) use of the product or its components to provide a service, information, or data; (3) use of the product or its components for therapeutic, diagnostic or prophylactic purposes; or (4) resale of the product or its components, whether or not such product or its components are resold for use in research. Invitrogen Corporation will not assert a claim against the buyer of infringement of the above patents based upon the manufacture, use or sale of a therapeutic, clinical diagnostic, vaccine or prophylactic product developed in research by the buyer in which this product or its components was employed, provided that none of (i) this product, (ii) any of its components, or (iii) a method claim of the foregoing patents, was used in the manufacture of such product. Invitrogen Corporation will not assert a claim against the buyer of infringement of the above patents based upon the use of this product to manufacture a product for sale, provided that no method claim in the above patents was used in the manufacture of such product. For information on purchasing a license to use this product for purposes other than those permitted above, contact Licensing Department, Invitrogen Corporation, 1600 Faraday Avenue, Carlsbad, California 92008. Phone (760) 603-7200.

shRNA Limited Use Agreement

Permitted Use. Portions of this product are covered by published patent applications (the “shRNA IP Rights”) owned by Cold Spring Harbor Laboratory, referred to herein as “CSHL.” This product, and/or any components or derivatives of this product, and/or any materials made by using this product or any component thereof is referred to herein as the “Product.” Subject to the terms of this Limited Use Agreement, sale of the Product by Open Biosystems (“OBS”) conveys the limited, nonexclusive, nontransferable right to any company or other entity that orders, pays for and takes delivery of the Product (the “Customer”) from OBS to use the Product solely for its internal research and only at such Customer’s facility where the Product is delivered by OBS.

Restrictions. Customer obtains no right to transfer, assign, or sublicense its use rights, or to transfer, resell, package, or otherwise distribute the Product, or to use the Product for the benefit of any third party or for any commercial purpose. The Product or components of the Product may not be used in vitro or in vivo for any diagnostic, preventative, therapeutic or vaccine application, or in the manufacture or testing of a product therefore, or used (directly or indirectly) in humans for any purpose.

Compliance. Customer may only use the Product in compliance with applicable local, state and federal laws, regulations and rules, including without limitation (for uses in the United States) EPA, FDA, USDA and NIH guidelines. Customer may not (directly or indirectly) use the Product, or allow the transfer, transmission, export or re-export of all or any part of the Product, in violation of any export control law or regulation of the United States or any other relevant jurisdiction.

Other Uses. Except for the permitted use expressly specified above and subject to the restrictions set forth above, no other use is permitted. CSHL shall retain all right, title and interest in and to the shRNA IP Rights. Nothing herein confers to Customer (by implication, estoppel or otherwise) any right or license under any patent of CSHL, including, for avoidance of doubt, under any patent that may issue from or relate to the shRNA IP Rights. For information on obtaining an agreement to use this Product for purposes other than those expressly permitted by this Limited Use Agreement, or to practice under CSHL patent rights, please contact the CSHL Office of Technology Transfer at (516) 367-8301.

Termination of Rights. Upon issuance of any patent covering any portion of the Product, any and all rights conveyed to any Customer (other than a research or educational institution that is a tax-exempt organization under section 501(c)(3) of the U.S. IRS code) under this Limited Use Agreement shall terminate and such Customer shall need a license from CSHL to continue to use any Product that was previously purchased, or to purchase from OBS or any other vendor or use any product claimed by such issued patent. At such time, such Customer may contact the CSHL Office of Technology Transfer at (516) 367-8301 and seek a license to use this Product under CSHL’s patent rights.

YOUR USE OF THIS PRODUCT CONSTITUTES ACCEPTANCE OF THE TERMS OF THIS LIMITED USE AGREEMENT. If you are not willing to accept the limitations of this agreement, OBS is willing to accept return of the Product for a full refund.

Technical support: 1-888-412-2225
Fax: 1-256-704-4849
info@openbiosystems.com

For Research Use Only

Page 11

MG021408