Application Note 2:
Fibroblast Spreading in Cell-Degradable 3-D Life Hydrogels

Cell spreading requires MMP cleavage and cell adhesion sites

3-D Life Hydrogels consist of a dense network of polymers with small pores at an estimated size of only several nanometers. If cells are supposed to spread and migrate within the gel, the dense network of polymers must be broken up by the cells. 3-D Life CD-Link is a crosslinker that contains a matrix metalloprotease (MMP) cleavable recognition site which can be cleaved by cells if they produce the corresponding MMPs. As a consequence, the hydrogel network locally loosens up and cells can spread within the gel (illustrated in Fig. 1).

Figure 1: Schematic drawing of cells growing in 3-D Life PVA Hydrogel crosslinked with either 3-D Life PEG-Link (left) or 3-D Life CD-Link (right).

3T3 fibroblasts were grown in PVA hydrogel that was either crosslinked with the undegradable crosslinker 3-D Life PEG-Link or the MMP cleavable 3-D Life CD-Link (Fig. 2). Cells grown in hydrogels with CD-Link spread whereas cells grown in gels crosslinked with PEG-Link stay round in tightly packed aggregates. Spreading of fibroblasts in 3-D Life Hydrogels does also require the presence of adhesion sites, e.g. the 3-D Life RGD Peptide. Without adhesion sites cells remain in tightly packed aggregates (not shown).

Methods

3T3 fibroblasts were cultured in 30 µl 3-D Life PVA Hydrogel crosslinked with either 3-D Life PEG-Link or 3-D Life CD-Link at a crosslinking strength of 2 mmol/l maleimide (Maleimide PVA) and 2 mmol/l Shi (PEG-Link or CD-Link) groups. Before crosslinking, Maleimide-PVA was covalently modified with 1 mmol/l 3-D Life RGD Peptide.

Products used

- 3-D Life Maleimide-PVA, 3 ml, Cat. No. M80-3
- 3-D Life RGD-Peptide, 3 mg, Cat. No. P10-3
- 3-D Life PEG-Link, 1 ml, Cat. No. L50-1
- 3-D Life CD-Link, 1 ml, Cat. No. L60-1
- 3-D Life User Guide